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Observations

Four Assumptions About Invariance in Perception
\

James E. Cutting
Cornell University

The term invariance has become more central to current views of perception. I
take this as a good trend, but the term is rooted in mathematics, and its use in
perception brings with it a host of assumptions that have generally been unex-
amined. The purpose of this article is to state some of these assumptions and
assess their validity, with the hope that we can continue to find the term useful
while acknowledging its limitations. The assumptions discussed are that (a) math-
ematics is an appropriate descriptive language for perception, (b) mathematical
truths are transportable into perception without change of meaning, (c) mathe-
matical imports are useful in explaining perception, and (d) perceptual invariants,
like their mathematical counterparts, are absolute and not subject to threshold
considerations.

If invariants of the energy flux at the receptors of an
organism exist, and if these invariants correspond to
the permanent properties of the environment, and if
they are the basis of the organism's perception of the
environment instead of the sensory data on which we
have thought it based, then I think there is new support
for realism in epistemology as well as for a new theory
of perception in psychology. I may be wrong, but one
way to find out is to submit this thesis to criticism.
(Gibson, 1967, p. 162)

Heraclitus thought the world was ever changing;
Parmenides thought it ever constant. In truth the
world seems to be some of both. There are those
things that change, sometimes called the variants,
and those that do not, sometimes called invariants.
From mathematics we get the idea that certain
aspects of an object or event can be constant even
while others are changing: Such things are said to
be invariant under transformation. As suggested
in the quote above, Gibson championed this idea
within psychology, and particularly within visual
perception. In recent years, this idea has seen in-
creasing popularity, and there are, I think, good
reasons for this upsurge. But underlying the cogent
statement given above • are many assumptions
about invariance. In this article, I investigate four
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of these. Since the term invariance is mathematical
in origin, and since as psychologists we use it to
huckster our ideas under the aegis of the Queen
of the Sciences, the four assumptions discussed
here deal with the intersection of mathematics and
perception.

The current importance of the concept of in-
variance in perception is, of course, due to Gibson.
The concept's use in perceptual theory, however,
is much older. Consider, for example, the following
passage from Helmholtz in his work, The Facts
of Perception (1878/1971):

I should like, now, to return to the discussion of the
most fundamental facts of perception. As we have
seen, we not only have changing sense impressions
which come to us without our doing anything; we also
perceive while we are being active or moving about.
. . . Each movement we make by which we alter the
appearance of objects should be thought of as an ex-
periment designed to test whether we have understood
correctly the invariant relations of the phenomena
before us, that is, their existence in definite spatial
relations.1 (p. 384)

1 The appearance of the term invariant here is due in
part to translation. The same phrase is translated in
Cohen and Wartofsky (1977, p. 136) as "lawlike behav-
ior." In a similar manner, Cassirer (1938/1944, p. 10;
translated by Gurwitsch) quoted Katz as follows: "The
idea of invariance, which is an epistemological problem
of validity of the foremost importance, has one of its
roots, and perhaps the most nutritive one, in the psy-
chology of perception." But in a different translation of
Katz (1935, p. 185; translated by MacLeod and Fox),
the same statement appears as follows: "The concept of
'constancy,' which involves an epistemological problem
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Although Helmholtz said much more than this,
here at least he has clearly promoted the idea of
an active organism exploring the invariants of an
object or event undergoing transformations caused
by exploration. That the notion of invariants was
crucial to Helmholtz has not been lost to students
of perception (Baird, 1970, p. 287; Cassirer, 1938/
1944; Hochberg, 1974, p. 33, 1979, p. 103). In
fact, Hochberg (1981b, p. 129) suggested that un-
der normal conditions of perceiving, the positions
of Helmholtz and Gibson are not distinguishable,
and that Helmholtz and others, such as Mill, were
very much concerned with invariants for percep-
tion.

Indeed, the idea of invariance appears in the
tool chest of nearly every perceptual theorist. For
example, Koffka used the term in many contexts.
In Principles ofGestalt Psychology (Koffka, 1935),
he quoted himself and analyzed the concept of
invariance as he understood it:

"On the west side of Lake Cayuga, a couple of hundred
feet or so above its level, stands a public building on
a wide lawn that slants slightly towards the lake. To
everyone this building seems to be tilted in a direction
away from the lake in a most striking manner."

[Similarly] when we look through the window of
[a] mountain railway carriage, this window becomes
our spatial framework and appears, therefore, in nor-
mal horizontal-vertical orientation. The contours of
the objects seen through the window do not intersect
the sash at right angles. Therefore, if the sash is seen
as horizontal, these objects cannot be seen as vertical.
. . . If one sticks one's head out of the window, [a]
telegraph pole will soon look vertical; when then, with-
out losing sight of it, one withdraws the head, the tele-
graph pole will still appear vertical and the windows,
the whole carriage, tilted. One factor in these two sit-
uations is invariant, the angle between ground and
object.

It is easy to apply the same principle to the house
on the western shores of Cayuga waters. The big lawn
here provides the base, and therefore looks level. Con-
sequently the house upon it must appear tilted, (pp.
217-218)

In other words, the ground is seen as invariably
horizontal, and the building therefore appears
tilted. Two things are important here. First, Koffka
(1935, pp. 75-105) had a strong influence on Gib-
son, particularly in his question "Why do things
look as they do?" (see Gibson, 1950, chap. 1;
1971). Second, Koffka used invariance somewhat
differently than Helmholtz and Gibson did. Gone
is the idea that aspects of the environment are
invariant under transformation. Invariants for

of the greatest importance, has perhaps its most impor-
tant root in the psychology of perception." What should
be clear, then, is that the concept of invariance has been
around a long time, but that the particular term is subject
to the problems of translation.

Koffka are constancies without any particular
mathematical implication.2

Gibson (1967), who was quoted in the intro-
duction to this article, suggested that the concept
of invariance in perception necessarily 'brings
forth a new theory of perception. What is clear,
however, is that this theory of perception is not
wholly new. What is new to Gibson is the full
emphasis on perceptual invariants, and the deem-
phasis on conceptual elaboration. Such a view
contravenes Helmholtz's unconscious inference
and Kbffka's (1935, p. 80) analysis of the non-
structure preserving mapping from distal to prox-
imal stimulus and from proximal stimulus to per-
cept (see also Epstein, 1977; Hochberg, 198la).

In his book, The Perception of the Visual World,
Gibson (1950) introduced the concept of invari-
ance that was to influence his later work. It is in-
teresting that he used the concept very little in that
work (pp. 153-154) and only when he discussed
a particular invariant from projective geometry—
the cross ratio. It was Boring (1952), in his "Visual
Perception as Invariance," who picked this idea
out of Gibson's (1950) work and emphasized its
importance. Boring was strongly influenced by
Stevens's (1951, pp. 19-21) discussion of invari-
ance as an idea that is central to all scientific en-
deavor (see also Cohen, 1931; Wigner, 1967).
Meanwhile, the concept of invariance appeared
in the literature independent of Gibson (e.g., All-
port, 1955, pp. 607, 657; Luchins & Luchins,
1964). Gibson was working on the idea of invari-
ants throughout that period (Gibson, 1958; Gib-
son, Olum, & Rosenblatt, 1955), and the first full-
scale treatments appeared shortly thereafter (Gib-
son, 1959, 1960). After this point, although much
of the rest of Gibson's theory changed, his dis-
cussion of invariants generally did not. He stuck
fairly closely to the idea from mathematics (see,
for example, Gibson, 1979, p. 310). The question
is, however, what assumptions are made when the
term invariance is used in perception?

Assumption 1: Mathematics Is an Appropriate
Descriptive Language for Perception

One assumption made by Gibson and by a
myriad of students of perception since Herbart is

2 As suggested in Footnote 1, the terms invarianceand
constancy are closely related. The idea of constancies was
introduced into psychology by the Gestalt -psychologists
and thus is in some sense a newer construal of invariance.
But, of course, the discussion of the relations among
distal stimuli, proximal stimuli, and percepts (although
these terms are due to Koffka) is as old as the discussion
of perception (see Epstein, 1977). I will not discuss con-
stancies per se, in part because their discussion is not
predicated on mathematics.
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that the best descriptors of perception are those
taken from mathematics. This assumption tran-
scends goals of elegance, formalism, and precision,
and seems to have as its basis two ideas: First, the
spatial layout of our perceptual world is best de-
scribed in some form of mathematics (typically
Euclidean geometry or projective geometry);3 sec-
ond, the human mind is attuned to that descrip-
tion, since it is attuned to the layout.

With regard to the mathematics of space and
its role in scientific thought, much discussion
stems from Helmholtz (1857/1962, Vol. 3), Kant
(1770/1929), and early 19th century natural phi-
losophy (see Kline, 1959, 1980). Helmholtz, for
example, suggested that Euclidean space is famil-
iar and comprehensible to us—and that the spaces
of Lobatchevsky, Riemann, and others are un-
familiar and difficult to imagine—because our ex-
perience is so incontrovertibly Euclidean. If we
lived in a different universe, or even in a different
local environment, Helmholtz suggested that we
might have developed non-Euclidean geometries
before Euclidean, and we might perceive in a non-
Euclidean manner.4 The Euclidean space that we
live in is three dimensional and not of higher di-
mensionality (Shepard, 1981), and historically the
central problem for space perception is how three
dimensions are perceived by a retinally based sys-
tem with only two dimensions. This problem has
been thought to be resolved, in part, through ap-
peal to projective geometry (Johansson, von Hof-
sten, & Jansson, 1980) and motion.

With regard to the intersection of mathematics
and the structure of the mind, the central idea is
at least as old as Galileo's mathesis universalis.
This Renaissance idea seems very modern and is
echoed by Pylyshyn (1972). We, as scientists, be-
lieve that

the secrets of the universe (both physical and psycho-
logical) are, as Galileo said, "written in the language
of mathematics." But this must not be misunderstood
to mean that it is only accessible to a mathematician.
Even less does it mean that everything of importance
can be measured and subjected to calculation. It
means that those aspects of the universe that are ul-
timately comprehensible to the human mihd are com-
prehensible because one can see in them a structure
that is essentially mathematical, (pp. 547-548)

Whereas Pylyshyn was more concerned with the
relation of linguistic formalisms to language, his
statement applies equally well to the relation of
perceptual theory to perception. In essence, many
of us believe that the secrets of the perception of
layout and of the perception of objects and events
are partly understood through the mathematics of
how these things are arrayed before us and how
they change when we or they move.

Together, then, these twin ideas—(a) the struc-
ture of the world as mathematical and (b) that

structure being comprehensible because of its
mathematical nature—form one assumptive basis
for realism as an epistemological position. It is the
promise of tractability in mathematical descrip-
tion of the optic array that makes realism tenable
for many of us and that promotes the study of
ecological optics. To say that mathematics is an
appropriate descriptive system for perception is,
however, a global statement. It makes no particular
commitment to the type of mathematics that may
be relevant to perception. Thus, I know few psy-
chologists who would overtly disagree with this
assumption; it is very weak. Mathematics is so
varied that it is difficult to believe, a priori, that
this assumption could be false.

Assumption 2: Mathematical Truths Are
Transportable into Perception
Without Change of Meaning

It is one thing to say that the world and our
perception of it are essentially mathematical. It is
quite another to say that the tools of a particular
branch of mathematics can be safely transported
out of a rigorous and tightly circumscribed do-
main into an entirely different, less rigorous, and
comparatively disordered domain like visual per-
ception. Cassirer (1938/1944) noted this when
discussing group theory and perception:

The precision of mathematical concepts rests upon
their being confined to a definite sphere. They cannot,
without logical prejudice, be extended beyond that
sphere into other domains, (p. 11)

In other words, Cassirer warned us that impor-
tation of mathematical ideas into the realm of
perception can be a problematic course of action.

3 The etymology of the term geometry is, of course,
"earth measure," reinforcing the tenure of the connec-
tion between the perception of physical space and its
measurement.

4 Helmholtz was somewhat more careful than this, but
this general attribution to Helmholtz is commonly found
(see, for example, Boring, 1950, p. 315). Helmholtz was
careful to distinguish between physical geometry of the
real world and pure geometry as a mathematical disci-
pline. Euclidean geometry, of course, is part of the latter.
One reason for this distinction was Berkeley's dismissal
of "natural geometry" as an alliance of physically ap-
parent space and Euclidean axioms (see Epstein, 1977,
pp. 12-13). Helmholtz recognized the predicament of
the mathematics of space and their relation to percep-
tion: There were many maths but one world. Kline
(1959, 1980), among others, attributed the fall of math-
ematics from its epistemologically central role in the
natural sciences in the 19th century to the fact that
mathematics could offer up many more geometries than
were physically apparent. It is this issue, and the Kantian
idea that "all properties of space are borrowed only from
external relations through experience" (Kant, 1770/
1929, Section 15D), that Helmholtz was concerned with.
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The structure of a particular branch of mathe-
matics may bear no resemblance to the structure
of perception and, more particularly, the problems
of a particular branch of mathematics may bear
no resemblance to those of perception. The im-
plication is that if any aspect of mathematics and
perception are nonisomorphic when dealing with
a particular problem, then the application of that
aspect of mathematics to that perceptual problem
will be misleading.

Cassirer (1938/1944, p. 19), however, went fur-
ther and made the strong claim that the principles
of invariance and groups are the basis of both per-
ception and geometric thought. Others have made
similar claims (see, for example, Piaget, 1970).
According to Cassirer, one can, through the in-
strumentality of these concepts, bring mathemat-
ical and psychological thought together under a
common denominator. This claim may be true,
but it is only partly empirical. I think we do not
yet know enough about the utility of invariants
in perception to make an informed judgment
about this.

What should be clear is that Assumption 2 is
a stronger and more particular version of As-
sumption 1: A specific kind of mathematics is
asked to work for a specific problem in percep-
tion—that of how we perceive constancies in the
world. Thus, we must assess whether the term in-
variance means the same thing in mathematics as
it has come to mean in perception. To do this, we
need more background on the term's use in math-
ematics.

Digression on Invariance, Transformations, and
Groups in Mathematics

Invariance is a term born of mid-19th century
mathematical thought. The term was first used,
according to Bell (1945), by Boole in 1841 and
Cayley in 1845 in algebra; it was first used, ac-
cording to Klein (1908/1939), by Sylvester in 1850
in the same field. As the use of the term developed
and spread, invariance came to mean "anything
which is left unaltered by a coordinate transfor-
mation" (Thomas, 1944, p. 7). Later in the 19th
century, with the work of Lie and Klein, the words
invariance and transformation became inter-
locked.

Psychologists have heard most about the early
history of invariance in the context of Klein's
"Erlanger Programm" of 1872 (Michaels & Car-
ello, 1981; Piaget, 1970; Shaw, Mclntyre, & Mace,
1974). This program set about to codify the var-
ious types of geometries by the different types of
invariance they maintained under different trans-
formations (Bell, 1945). Michaels and Carello
(1981, pp. 30-36; see also Shaw & Pittenger, 1977,
pp. 114-116) presented a clear discussion of the
relationship of Euclidean space (which has dis-

tance invariant), to similarity space (which has
invariant ratios of similitude—objects can be ex-
panded or contracted without loss of shape), to
affine space (which has invariant ratios of divi-
sion—strains or shears of one axis with another
preserve collinearities and proportionalities), to
projective space (which preserves cross ratios of
four collinear points). Euclidean space has in-
variants under translation, picture-plane rota-
tions, and reflections; similarity space has invari-
ants under expansion and contraction; affine space
has invariants under stretching or compression of
a single axis or rotations of one axis against the
other (as in parallel projection); and projective
space has invariants under rotations out of the
picture plane (as in polar projection). Klein's pro-
gram defined a geometry as a system of definitions
and theorems that remain invariant under a given
group of transformations.

If invariants are those things in a geometry that
are unaltered by coordinate change, we need to
know more about these transformations and how
they form a group. The key concept here is group
in its mathematical, but not commonsensical,
meaning. There are four postulates of a group
(Bell, 1945, pp. 215-216; see also Stevens, 1951,
P. 18):

1. Closure: It a and b are members of a set of
operations (transformations) then a°b is also a
member of the set. In other words, the group is
closed. (° denotes combination.)

2. Association: For any three operations,
(a°b)°c - a°(b°c). In other words, pairwise order
of combination of a string of operations is irrel-
evant.

3. Identity: There is an operation / such that
a°i = i°a = a. In other words, the group includes
a null operation.

4. Reversion: There is an operation a' such that
a'°a = i. In other words, the existence of one op-
eration implies its reverse as another member of
the group.

Now consider what one can do with a block of
wood on a desk. One can push it to the right
(Operation a) and push it backwards the same
extent (Operation b). One can also push it diag-
onally at 45° until it finally rests in the same place,
a°b. If Operation c is turning the block over, one
can move the block diagonally and then turn it
over, (a°b)°c, or one can move it to the right, then
move it back an equal amount while turning it
over, a°(b°c). And of course, one can do nothing,
/', and do the opposite of a, b, and c. In addition,
if the operations are also commutative (a fifth pos-
tulate), a°b = b°a, then the group is Abelian; the
group of operations listed above is such a group.
In Euclidean space, a rigid object like our block
of wood can be moved around without changing
its shape. All possible motions (or transforma-
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tions) of this object form a continuous group—
the "group of displacements" (Piaget, 1970, p.
20)—that is infinitely dense in potential opera-
tions along its various dimensions. Helmholtz
tried to use this idea in an account of the percep-
tion of objects in space, and Cassirer (1938/1944)
developed it in an attempt to coordinate percep-
tion and geometry. It is this coordination, if pos-
sible, that legitimizes the importation of the terms
invariance, transformation, and group into per-
ception without changing their mathematical
meaning.

Assumption 3: Mathematical Imports
Are Useful in Explaining Perception

It is one thing to import a term successfully
from a different discipline, but is yet another to
make it work for you. As an entree in this dis-
cussion, consider again Klein's program and its
efficacy in the late 19th and early 20th centuries
within mathematics. Basically two things hap-
pened: The program ultimately failed, and where
some of its ideas were generalized, the results
seemed trivial (Bell, 1945, pp. 443-446). With
regard to the first point, many new geometries
were developed that did not fit the program. In
particular, the concept of space developed such
that its intrinsic structure might be, but generally
could not be, defined in terms of transformation
groups. But more relevant to our third assumption
is the matter of trivialization in the application of
groups, invariance, and transformation. The Er-
langer Programm flourished for a few decades, and
its ideas were applied to nearly everything imag-
inable. This brought problems, as Bell (1945)
noted:

The success of the Erlanger Programm was also partly
responsible for another tendency that did mathematics
no particular good. When it was shown that a certain
theory satisfied the postulates of a group, it seems to
have been assumed as a matter of course that the the-
ory was thereby significantly advanced. To cite a trivial
instance, when it is gravely announced that all of the
rational integers form a group with respect to addition,
common sense will not stand open mouthed in dumb
admiration, but will demand, "What of it?" (p. 446).

Like the application of groups to rational integers,
any particular application of invariance, transfor-
mations, and groups to perception may be trivial.
To say that everything one can do to a block of
wood that retains its invariant character satisfies
the postulates of an Abelian group does not appear
to elucidate a theory of the perception of the block
or a theory of action with that block; it simply
states the obvious in an obfuscating manner. More
generally, even if Cassirer's (1938/1944) assump-
tion of invariance, transformations, and groups as

common denominators for perception and ge-
ometry were true, it is not necessarily important
for perception, nor is the equation of the concept
of symmetry with invariance (Weyl, 1952). Both
concepts simply state that object identity is pre-
served. It should be evident that perception is rule
governed and yields constancies, since it works
flawlessly most of the time. We don't need group
theory to know this.

Consider a case in which these concepts do not
particularly help. At the heart of group theory is
the null transformation, i. When applied to per-
ception, all possible objects and events are in-
variant (or symmetrical) under the null transfor-
mation. But this truth does not seem informative
with regard to discovering the nature of how we
perceive: To say that objects and events are in-
variant under the null transformation seems as
vacuous as it is pedantic. One might try to remove
the null transformation from the group—in es-
sence, stating that we perceive invariants as re-
vealed under all non-null transformations—but
then we no longer have a group: The identity and
reversion postulates have been violated. Moreover,
it is not simply the null transformation that is
problematic. The null transformation is com-
pletely surrounded by infinitesimal transforma-
tions that are also likely to be useless to percep-
tion. I will return to this when discussing Assump-
tion 4.

What is important here, I believe, is that once
the notion of invariants under coordinate trans-
formations is applied to perception, it is an em-
pirical matter as to whether it will be useful to
perceptual theory. The link begins as a codification
that may be circularly rooted in geometry and
perception (Cassirer, 1938/1944), but unless one
can specify that some invariants are used in per-
ception and some are not, or that some transfor-
mations preserve functional invariants for percep-
tion and some do not, the use of the concepts of
group, transformation, and invariance in percep-
tion may be little more than whistling in the
breeze. In other words, I doubt that perceptual
theory will be advanced without a partial decou-
pling of perception from these mathematical ideas.

Digression on the Overgeneralization of the
Concept of Invariants in Perception

In group theory the members of the group are
transformations, all related by the postulates given
earlier. These transformations are operators, and
what they operate on is left unchanged after the
operation, which can always be thought of as a
change in coordinates. What is important here is
that there are two species of mathematical entities:
invariants and transformations. Recently, Shaw
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and Pittenger (1977; see also Michaels & Carello,
1981) have called these two varieties of the same
species, that is, invariants. Shaw and Pittenger
(1977, p. 113), for example, spoke of transfor-
mations or symmetry operations as being trans-
formational invariants, and what they operate on
as being symmetries or structural invariants. In
various places, I have parsed event structure in
essentially this same way (Cutting, 1981, 1982;
Cutting & Proffltt, 1981). However, I now think
that the term transformational invariant and its
cognates are misleading; perhaps they are even
oxymorons. My reasons for this center on the idea
that if we can make the term invariant useful to
psychology, we ought to try to do it without chang-
ing its mathematical meaning.

Invariants are invariants because they survive
transformations unchanged. But transformations
are not invariant simply because they are un-
changed by the entities that they operate on or are
unchanged by other transformations. In other
words, there is an asymmetry between invariants
and transformations: Transformations operate on
both invariants and,variants and are themselves
changed by neither; invariants are operated on by
transformations and are unchanged, whereas vari-
ants are operated on by those transformations and
are changed. It does not seem in the nature of
transformations for them to be variant or invari-
ant in any mathematical sense; they simply are
what they are—operations. Another way to look
at this, provisionally accepting the application of
the term invariant to an operator, is to suggest that
the term transformational invariant is uninfor-
mative because there appears to be no such thing,
mathematically speaking, as a transformational
variant. Objects, for example, do not operate on
transformations such that they could change them.
Pushing a block to the left will not become pushing
it to the right or turning it over due to the character
of the block.5

The tendency toward overgeneralization of the
term invariant is also occasionally found in Gib-
son, For example, Gibson (1972, p. 221) noted
that "A great many properties of the array are
lawfully or regularly variant with changing obser-
vation point and this means that in each case a
property denned by the law is invariant." Ullman
(1980, p. 378) criticized this position as being too
vague and broad to be helpful in an analysis of
perception, and I agree with Ullman. If we are to
make the term invariance useful to perception, we
must guard against its overgeneralization.

Assumption 4: Perceptual Invariants Are
Absolute, as in Mathematics

When discussing the third assumption, I pointed
out that the null transformation was not psycho-

logically useful. This transformation, however, is
not a special case; it is simply the center of a region
of transformations in a continuous group that are
so small as to be undetectable by a perceiver. In
other words, there are likely to be an infinite num-
ber of transformations of an object in three-di-
mensional Euclidean space that are too small to
reveal any invariants that are not revealed under
the null transformation. This point was made im-
plicitly by Luchins and Luchins (1964), and ex-
plicitly by Hochberg (198la, pp. 276-277; 1982),
but it was made earlier by Cassirer (1938/1944)
in a statement that weakens his argument on the
parallel between geometry and perception:

It goes without saying that this analogy between the
formation of invariants in perception and in geometry
ought not to make us overlook the thoroughgoing dif-
ferences which are very important from the episte-
mological point of view. These differences may be
characterized by an expression which Plato used to
define the opposition of perception to thought. All
perception is confined to "more or less." . . . Only
approximative, not absolute determinations are at-
tainable in perception. This realization is never ideally
complete, but always remains within certain limits.
The fixation of these limits constitutes one of the most
important tasks of psychological research. Beyond
these limits there is no further "transformation."
(p. 16)

What Hochberg and Cassirer have said is that there
are some transformations that simply are not psy-
chologically relevant; they are too small. Any in-
variant not revealed under the null transformation
is not revealed by these transformations either.
Thus, there is a nonisomorphism between group
theory and perception: In mathematics, all trans-
formations reveal invariants, whereas in percep-
tion it may often be the case that only those trans-
formations that are sufficiently < large reveal in-
variants. Without acknowledgment of threshold
considerations, a theory of perception based on
invariants is simply a stimulus theory without nec-
essary relevance to the organism (Epstein & Park,
1964; Freeman, 1965, 1966).

This is much more than a quibble. One must
not assume that we are simply dealing with nec-
essarily minute changes in optical flux. Threshold
determination for perceptual invariants is an em-

5 This asymmetry is to be contrasted with structural
invariants and structural variants, since both can exist.
Thus, the term structural invariant seems better than
transformational invariant, although without the benefit
of its paired member, it may be redundant. The term's
use (see, e.g., Shaw & Pittenger, 1977) seems not far
removed from the meaning of structure invariance as
used in measurement theory (Luce & Krumhansl, in
press; Pfanzagl, 1968).
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pirical questipn, and some thresholds may be so
high as to render questionable any use of them at
all. Consider two examples: One of the invariants
of layout is the density gradient (Gibson, 1950, p.
138) in which optically random arrangements of
objects increase in density with distance. Through
experimentation, however, we now know that the
human eye is not very sensitive to density gra-
dients per se as yielding perception of layout in
depth (Braunstein, 1976; Marr, 1982), despite the
fact that it is difficult to imagine'any aspect of our
environment that is more ecologically prevalent.
What the eye is sensitive to is size-shape invari-
ants. A second example, an invariant revealed
through motion, is the center of the optical flow
pattern (Gibson, 1950, p. 127ff; 1966). This point
is said to tell an observer where he or she is going.
Yet again through experimentation we know that
the flow of a surface toward which an observer is
moving orthogonally does not reveal such a point
to the human observer to greater accuracy than
about 10° of visual angle (Johnston, White, &
Gumming, 1973; Llewellyn, 1971; Regan & Bev-
erley, 1982; Cutting, Note 1). Again, it is difficult
to imagine many aspects of our environment that
are much more pervasive; The surfaces of walls
and buildings are all around us as we move be-
tween them. It would seem, then, that a density
gradient and the center of optic flow are two in-
variants for which the "more or less" of our per-
ception is a necessary concern.

Summary

I have tried to explicate four assumptions that
I think underlie the application of the term in-
variance to perception. I make no claim that these
exhaust the assumptions, and I emphasize that
they are not independent. Moreover, they focus
only on the idea of invariance as imported from
mathematics—whether it has survived importa-
tion into psychology, whether immigration au-
thorities have forced it to change its meaning, and
whether it is a useful citizen.

I believe the first assumption to be valid, per-
haps only because it is almost completely nonre-
strictive: Mathematics is an appropriate descrip-
tive language for perception, if only because its
formalisms can take on a nearly infinite variety
of forms.

I believe that the second and third assumptions
can be valid if one is careful. Certain mathematical
truths (such as invariance under transformation)
are transportable into perception without loss of
meaning and they can be useful to us. If these
assumptions are to remain valid, psychologists
must guard against contamination of the trans-
planted idea. Careful specification of invariants
can help retain the vigor of the term, and wariness
about overgeneralizations of the term will keep it

from speciating beyond recognition. The term in-
variance may take hold and grow in perception,
and the term transformation may as well, but these
terms do not guarantee that the term group will
be useful just because it belongs to the same alien
family. Group theory, I believe, is not easily ap-
plied to perception as more than an empty for-
malism.

I believe the fourth assumption to be false: Be-
cause of the "more or less" of perception, percep-
tual invariants cannot be absolute. This fact forces
us to realize that complete parallels between ge-
ometry and perception are unattainable and that
invariance may not always be able to do the yeo-
manly work in perception that many of us might
want. At best, invariants appear to work for us as
perceivers and work for us as psychologists only
some of the time. The determination of how well
they work for perceivers and psychologists is an
empirical question that is not helped by philo-
sophical speculation and pronouncement.

Reference Note

1. Cutting, J. E. Motion parallax and visual flow: How
to determine direction of locomotion. Paper presented
at the fourth meeting of the International Society of
Ecological Psychology, Hartford, Conn., October
1982.
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